报告人:李维喜 教授 (武汉大学)
报告人简介:李维喜于2008年博士毕业于武汉大学,师从陈化教授。现为武汉大学数学与统计学院教授,国家优秀青年基金获得者。李维喜教授主要从事偏微分方程的研究,特别是在退化椭圆方程的正则性,流体力学方程的边界层分析,以及谱分析等方面做出了一系列出色的工作。现已在Adv.Math., J.Nonlinear Sci., CPDE, SIAM-MAJ 与JDE等国际著名期刊上发表论文20余篇。
报告题目:Well-posedness in Gevrey space for the Prandtl equations with non-degenerate critical points
报告摘要:We will talk about the Prandtl system with initial data admitting non-degenerate critical points. For any index $\sigma \in [3/2,2]$, we obtain the local in time well-posedness in the space of Gevrey class $G^\sigma$ in the tangential variable and Sobolev class in the normal variable so that the monotonicity condition on the tangential velocity is not needed to overcome the loss of tangential derivative. This answers the open question raised in the paper of D. G\'{e}rard-Varet and N. Masmoudi [ Ann. Sci. \'{E}c. Norm. Sup\’{e}r. (4) 48 (2015), no. 6, 1273-1325], in which the case $\sigma=7/4$ is solved.
报告时间:2017年6月21日(星期三)上午10:30---11:30
报告地点:科技楼南楼702