报告人:Shigui Ruan (阮士贵)
报告题目:Periodicity and Synchronization in Malaria Infection with Immune Response
--- with an Introduction of Research by some Nobel Laureates in Medicine or Physiology
疟疾传染免疫应答的周期性与同步性
---- 若干诺贝尔医学或生理奖工作简介
报告人简介:阮士贵教授1992年获得加拿大阿尔伯特大学数学系博士学位,随后在国际著名的加拿大菲尔兹数学所做Junior Fellow和麦克马斯特大学做博士后。1994-2002在加拿大道尔豪斯大学数学与统计系先后任助理教授和副教授。现为美国迈阿密大学数学系终身教授。
阮士贵教授的主要研究领域是动力系统和微分方程及其在生物和医学中的应用,在非线性发展方程的中心流型理论,非局部反应扩散方程的行波解,生物系统的多参数分支分析等方向作了很多重要工作。特别是针对一些在我国流行的一些传染性疾病(如乙型肝炎、血吸虫病、狂犬病等)的数学建模、数据模拟和理论分析作了一系列开创性工作。在包括《美国国家科学院院刊 (PNAS)》、《临床传染病(CID))、《美国数学会会报(Memoirs Amer Math Soc)》、《纯粹与应用数学杂志(J Math Pures Appl))等顶尖学术期刊上发表了一系列高水平的学术论文,受到了国内外同行的关注与大量引用。担任了一些重要核心学术期刊的编委(如《DCDS-B》、《BMC Infectious Diseases》、《Mathematical Biosciences》等)。作为项目负责人获得美国国家卫生研究院、美国国家科学基金和中国国家自然科学基金多项资助。
报告摘要:On October 3, 2011, three scientists (Bruce A. Beutler, Jules A. Hoffmann and Ralph M. Steinman) won Nobel Prizes in Medicine or Physiology for their discoveries on how the innate and adaptive phases of the immune response are activated and thereby provide novel insights into disease mechanisms. Their work has opened up new avenues for the development of prevention and therapy against infections, cancer, and inflammatory diseases. In this talk I’ll use malaria as an example to explain how both innate immunity and adaptive immunity fight against malaria infection and to model the within-host dynamics of malaria infection with immune response. For the ODE model consisted of healthy red blood cells, infected red blood cells, malaria parasitemia, and immune effectors, conditions on the existence and stability of both infection equilibria are given and it is shown that the model can exhibit periodic oscillations. Using the Hopf bifurcation theorem for abstract Cauchy problems in which the linear operator is not densely defined and is not a Hille-Yosida operator, it is shown that the age-structured malaria model of infected red blood cells (Rouzine and McKenzie, Proc Natl Acad Sci USA, 2003) undergoes Hopf bifurcation when the replication rate is used as the bifurcation parameter. Both mathematical analysis and numerical simulations confirm the observation of Kwiatkowski and Nowak (Proc Natl Acad Sci USA,1991) that synchronization with regular periodic oscillations (of period 48 h) occurs in malaria infection with modest replication rates.
报告时间:2016年10月10日(星期一)下午4:00
报告地点:科技楼(南楼)702