报告人:李平(长江大学)
报告题目:Lp boundedness of wave operators for high-order Schrödinger operators on the line
报告摘要:In this paper, we are mainly devoted to investigating the Lp boundedness of wave operators $W_\pm$ associated with high-order Schrödinger operators $H=(-\Delta)^m+V(x)$ with $m \geq 3$ in dimension one when zero is a regular point. Under a suitable decay condition on potential V, we established a general conclusion covering the already known results for the cases $m=1,2$ by a unified method. Specifically, our results are twofold: for the non-endpoint case, we have obtained that $W_\pm \in B(L^p(w_p))$ for any $1< p< \infty$, $w_p\in A_p$; and for the endpoint situation, $W_\pm\in B(H^1(R)$, $L^1(R)\bigcap B(L^\infty, BMO(R)))$ and if suppV is compact $W_\pm\notin B(L^1(R))$, but $W_\pm\notin B(L^1(R))$, and generally $W_\pm\notin B(L^\infty(R))$. This work is joint with S. Chen,S. Huang and X. Yao.
报告时间:2024年10月11日(星期五)16:00-18:00
报告地点:科技楼南607室
邀请人:黄山林
报告人简介:李平,长江大学信息与数学学院,副教授,目前主持国家基金面上项目一项;研究方向为调和分析及其应用、非交换调和分析;近年来聚焦于高阶薛定谔算子的色散估计、高阶波方程的色散估计、非交换调和分析的研究,取得了一系列原创性成果,这些成果部分发表于Journal of Functional Analysis,J. Diffferential Equations, Communications on Pure and Applied Analysis等期刊上。