发布时间:2018-06-12
报告人:罗鹏(华中师范大学)
报告题目:The positive ground state solution on nonlinear Schrodinger equations
报告摘要:We are concerned with the following nonlinear Schr\"odinger equation
\begin{equation*}
-\varepsilon^2\Delta u+ V(x)u=|u|^{p-2}u,~u\in H^1(\mathbb{R}^N),
\end{equation*}
where $\varepsilon>0$ is a small parameter, $N\geq 1$, $2<p<2^*$.
For a class of $V(x)$ which attains the minimum at a closed hypersurface $\Gamma$, we give the location of the concentrated point to the positive ground state solution and establish the local uniqueness of the positive solution with concentration under certain conditions on $V(x)$, which implies the uniqueness of positive ground state solution. Also some partial symmetry can be obtained by the uniqueness. Here our main tools are the local Pohozaev identities and blow-up analysis. And the crucial key is to analysis the precise algebra relation of the concentrated point caused by the degeneracy and inhomogeneity of $V(x)$ at this point.
报告人简介:罗鹏,华中师范大学数学与统计学学院副教授。2014年6月博士毕业于武汉大学数学与统计学院,2016年6月博士后出站于中国科学院数学与系统科学研究院。研究方向为偏微分方程及其应用,主要研究兴趣是椭圆方程解的集中现象。主持中国博士后科学基金和国家自然科学基金青年项目等。主要成果发表在JMPA,CVPDE,JDE等SCI期刊。
报告时间:2018年6月14日(星期四)11:00-12:00
报告地点:科技楼南702