发布时间:2018-01-10
数学与统计学院学科建设系列报告会(一)
报告地点:数学与统计学院科技楼南楼602室
(一)报告人:王兆军 教授(南开大学)
报告题目:Multiple change-points detection in high dimension
报告摘要:Change-point detection is an integral component of statistical modeling and estimation.For high-dimensional data, classical methods based on the Mahalanobis distance are typically inapplicable. We propose a novel testing statistic by combining a modified Euclidean distance and an extreme statistic, and its null distribution is asymptotically normal. The new method naturally strikes a balance between the detection abilities for both dense and sparse changes, which gives itself an edge to potentially outperform existing methods. Furthermore, the number of change-points is determined by a new Schwarz’s information criterion together with a pre-screening procedure, and the locations of the change-points can be estimated via the dynamic programming algorithm in conjunction with the intrinsic order structure of the objective function. Under some mild conditions, we show that the new method provides consistent estimation with an almost optimal rate. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of power and estimation accuracy, and two real data examples are used for illustration.
报告时间:2018年1月13日上午8:30-9:10
(二)报告人:张虎 教授 (中南财经政法大学)
报告题目:中国制造业与生产性服务业规模分布的空间特征研究
报告时间:2018年1月13日上午9:10-9:50
9:50-10:10茶歇
(三)报告人:彭济根 教授 (西安交通大学)
报告题目:稀疏信息处理的lp模型理论与算法
报告摘要:兴起于压缩感知的稀疏信息处理已成为信息处理中的主流研究方向,而且从方法论上看稀疏也已成为众多科学研究与工程技术应用中的一种新的思维理念。那么,何为稀疏,何为压缩感知,何为稀疏信息处理,其核心问题是什么,其理论基础是什么,如何本质建构其模型理论,如何设计其模型的高效求解算法等,诸此问题形成了了解并理解稀疏信息处理理论体系的链式导向。在本报告中,报告人将以这些问题为论点,以通俗易懂与图文并茂的方式,循序引导听众进入稀疏信息处理,一窥其全貌。同时,报告人还将介绍其关于稀疏模型的等价性方面所取得的最新研究成果。
报告时间:2018年1月13日上午10:10-10:50