发布时间:2024-10-15
Convergence results of a discontinuous Galerkin method on Bakhvalov-type mesh for a singularly perturbed Volterra integro-differential equation
主讲人:罗贤兵
摘要:A discontinuous Galerkin (DG) method on Bakhvalov-type (B-type) mesh is proposed for a singularly perturbed Volterra integro-differential equation (SPVIDE). We derive abstract error bound of the DG method for the SPVIED in the L^2-norm. It is then shown that the approximation solution generated by the DG method on B-type meshes has optimal convergence rate k+1 in the L^2-norm, when using a piecewise polynomial space of degree k. Finally, numerical simulations demonstrate the validity of theoretical results.
主讲人简介:罗贤兵,贵州大学数学与统计学院教授,博士生导师,中国数学会计算数学会理事。主要从事偏微分方程及最优控制问题数值方法研究,在有限元方法和有限体积法研究方面取得了一系列研究成果。主持国家自然科学基金项目多项,在《Sci. China Math.》等国内外学术期刊发表SCI论文二十余篇。
邀请人:黄乘明
时间:10月18日10:20—12:20
地点:腾讯会议室:584991170