发布时间:2024-07-28
Review for Classical Deep Learning Algorithms with Applications
主讲人:金海
摘要: In this talk, we shall first look at mathematical backgrounds for deep learning: loss/optimizer/metrics,overfitting vs generalization, and classification vs regression. Then, we will cover many aspects of Computer Vision (CV) algorithms: convnets(such as those in the Xception model), data augmentation, feature extraction and fine-tuning with pretrained models, and model interpretation. Next, we will discuss DL algorithms for time series or sequence data: LSTM, GRU, the transformer architecture. Last, we will study a few interesting DL applications, such as DeepDream, Neural style transfer, and image generation. The audience may expect this talk as a comprehensive review for classical DL algorithms with implementation details-the source code.
主讲人简介:金海, 副教授. 研究领域: 微分方程数值解法, 机器/深度学习算法. 2006 年博士毕业于美国华盛顿大学, 2008年入职北京理工大学. 主要从事各种数值算法、ML/DL算法、及各种算法的应用. 研究成果发表于Numerical Algorithms、Journal of Computational and Applied Mathematics、Applied Numerical Mathematics、European Journal of Physics等期刊上。
邀请人:周少波
时间:2024年8月2日上午10:00-12:00
地点:逸夫科技楼711室