发布时间:2022-11-01
Analysis of Radau IIA methods in the maximal parabolic regularity framework
主讲人:Georgios Akrivis
摘要:We consider the discretization of differential equations in UMD Banach spaces satisfying the maximal parabolic L p -regularity property by Radau IIA methods. It is known that the Radau IIA methods preserve the maximal L p -regularity (B. Kovács, B. Li, and C. Lubich: A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal. 54 (2016) 3600–3624). We discuss the derivation of optimal order a priori as well as a posteriori error estimates in the maximal parabolic regularity framework. Pointwise formulations of the Radau IIA methods, viewed as collocation methods, play a key role in the a posteriori error analysis. We also briefly discuss the extension of the results to the case of nonautonomous parabolic equations.
主讲人简介:Georgios Akrivis希腊约阿尼拉大学教授,SIAM J Num. Anal 编委。计算数学顶级专家,主要研究微分方程数值解。在Numer Math, Math Comput, SIAM. J. Numer. Anal等杂志发表SCI论文50余篇。
邀请人:李东方
时间:2022年11月3日(星期四)15:00-17:00
地点:ZOOM会议室 ID:830 4142 5698