报告人: 席亚昆,博士(Johns Hopkins University)
报告题目: Geodesic period integrals of eigenfunctions on Riemannian surfaces.
报告摘要: We use the Gauss-Bonnet theorem and the triangle comparison theorems of Rauch and Toponogov to show that on compact Riemannian surfaces of negative curvature,period integrals of eigenfunctions over geodesics go to zero at the rate of O((log λ)^(−1/2)) if λ are their frequencies. No such result is possible in the constant curvature case if the curvature is ≥ 0.
报告人简介:席亚昆本科毕业于浙江大学数学系,现于Johns Hopkins University 师从
Christopher D.Sogge 教授,主要兴趣是调和分析,包括Kakeya猜想,特征函数估计等相关问题。
报告时间: 2016年12月20号下午15:00-16:00
报告地点: 科技楼南楼602