学术报告
报告人:王术 教授(北京工业大学应用数理学院)
简介:王术,男,1968年2月生于河南淅川,博士,教授,博士生导师,北京工业大学应用数理学院院长,北京工业大学应用数学研究所副所长,北京工业大学数学一级学科博士学位授权点责任教授,北京市重点建设学科“应用数学”学科负责人,北京工业大学校学术委员会和学位委员会委员以及应用数理学院学位委员会主任和学术委员会副主任,国家留学基金会议评审专家。曾任中国数学会理事。2001年被评为中国科学院优秀博士后。1986年河南大学本科毕业,1993年北京理工大学硕士研究生毕业,1998年南京大学博士研究生毕业。曾在中科院数学所和奥地利维也纳大学做博士后,曾在美国加州理工学院做高级访问学者,曾在法国Blaise Pascal大学做访问教授,应邀请访问美国、法国、德国、意大利、奥地利、日本、捷克、新加坡、香港等国家和地区20多次,进行学术交流、合作与访问讲学。主要研究:偏微分方程及其应用。现主持或曾主持国家自然科学基金6项,独立获得北京市科学技术奖二等奖1项,出版著作3部,在《Adv. In Math.》《ARMA》《SIAM J Math Anal》《CPDE》《J. Diff. Eqns》等杂志发表学术论文100余篇,其中SCI收录论文70余篇。研究成果被世界上20多个国家或地区的学者广泛引用。
题目:On an axisymmetric model for the 3D incompressible Euler and Navier-Stokes equations
摘要:We study the singularity formation and global regularity of an axisymmetric model for the 3D incompressible Euler and Navier-Stokes equations. This 3D model is derived from the axisymmetric Navier-Stokes equations with swirl using a set of new variables. The model preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected. If we add the convection term back to our model, we would recover the full Navier-Stokes equations. We prove rigorously that the 3D model develops finite time singularities for a large class of initial data with finite energy and appropriate boundary conditions. Moreover, we also prove that the 3D inviscid model has globally smooth solutions for a class of large smooth initial data with some appropriate boundary condition. The related problems are surveyed and some recent results will also be reviewed.
References:
1.Hou, Thomas Y.; Li, Congming; Shi, Zuoqiang; Wang, Shu(王术); Yu, Xinwei. On singularity formation of a nonlinear nonlocal system. Arch. Ration. Mech. Anal. 199 (2011), no. 1, 117–144.
2. Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu(王术). On singularity formation of a 3D model for incompressible Navier-Stokes equations. Adv. Math. 230 (2012), no. 2,607–641.
3. Hou, Thomas Y., Lei, Z., Luo, G., Wang, Shu(王术), Zou, C. On Finite Time Singularity and Global Regularity of an Axisymmetric Model for the 3D Euler Equations. Arch Rational Mech. Anal., 212(2014), 683-706.
4. Wang, Shu(王术). On a new 3D model for incompressible Euler and Navier-Stokes equations. Acta Mathematica Scientia.30B(6)(2010): 2089-2102.
报告时间:2016年5月13日(星期五)上午10:30---11:30
报告地点:科技楼南楼702