报告人:邓定文(南昌航空大学)
报告题目:Two structure-preserving finite difference methods for Fisher-Kolmogorov-Petrovsky-Piscounov equation and Allen-Cahn equation
报告摘要:This report discusses the development and analyses of two claasses of structure-preserving finite difference methods (FDMs) for Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) equation and Allen-Canh equation. To begin with, a class of explicit structure-preserving Du Fort-Frankel-type FDMs are developed for Fisher-KPP equation. They inherit some properties of the continuous problems, such as non-negativity, maximum principle and monotonicity. Secondly, a class of stabilized, implicitly, non-negativity- and boundedness-preserving FDMs are derived for Fisher-KPP equation. Thirdly, as they are applied to solve Allen-Cahn equation, the obtained solutions can unconditionally inherit the maximum value principle and energy-dissipation property of the Allen-Cahn equations. Finally, numerical results confirm the correctness of theoretical findings and high efficiencies of the proposed algorithms.
报告时间:2025年3月1日(星期六)8:00-10:00
报告地点:科技楼706会议室
邀请人:张诚坚
报告人简介:邓定文,博士,南昌航空大学教授,硕士生导师,主要从事偏微分方程数值解法研究;主持国家自然科学基金四项,主持包括中国博士后科学基金,江西省重点项目,江西省杰出青年基金在内的各类省 (部) 级和厅级科研项目 11 项;受国家留学基金委面上项目的资助于2016-12-01至 2017-11-30访问加拿大约克大学数学与统计学院;2015年入选南昌航空大学青年英才开发计划,在国内外专业刊物上发表学术论文近 60篇。