报告人:张智民(韦恩州立大学)
报告题目:Polynomial Preserving Recovery for Gradient and Hessian
报告摘要:Post-processing techniques are crucial in scientific and engineering computation. One such technique, Superconvergent Patch Recovery (SPR), proposed by Zienkiewicz-Zhu in 1992, has been widely used in finite element commercial software packages such as Abaqus, ANSYS, Diffpack. Another technique, Polynomial Preserving Recovery (PPR), has been adopted by COMSOL Multiphysics since 2008. In this talk, I will survey the PPR method and discuss its resent development for obtaining the Hessian matrix (second derivatives) from the computed data.
报告时间:2024年10月28日(星期一)14:30-17:30
报告地点:科技楼南706室
邀请人:李东方
报告人简介:张智民,美国韦恩州立大学教授,Charles H. Gershenson 杰出学者。研究方向是偏微分方程数值解,包括有限元,有限体积,谱方法等,发表学术论文200余篇;提出的多项式保持重构Polynomial Preserving Recovery(PPR)格式于2008年被国际上广为流行的大型商业软件 COMSOL Multiphysics 采用,并使用至今。担任或曾任“Mathematics of Computation” “Journal of Scientific Computing” 等9个国际计算数学杂志编委。