学术报告
报告人:王勇(中科院应用数学所,助理研究员)
报告人简介:王勇现为中科院应用数学所助理研究员,于2012年7月在中科院数学与系统科学学院获得博士学位,师从国家杰出基金获得者黄飞敏研究员。王勇博士主要从事非线性偏微分方程的研究,特别是对可压缩流体与Boltzmann方程的整体适应性等问题有着深入系统的研究,取得了一系列重要的成果。迄今已在Arch. Rational Mech. Anal., SIAM J.Math. Anal., J. Differential Equations等期刊上发表论文十余篇。
题目:Global well-posedness of the Boltzmann equation with large amplitude initial data
摘要:The global well-posedness of the Boltzmann equation with initial data of large amplitude has remained a long-standing open problem. In this paper, by developing a new $L^\infty_xL^1_{v}\cap L^\infty_{x,v}$ approach, we prove the global existence and uniqueness of mild solutions to the Boltzmann equation in the whole space or torus for a class of initial data with bounded velocity-weighted $L^\infty$ norm under some smallness condition on $L^1_xL^\infty_v$ norm as well as defect mass, energy and entropy so that the initial data allow large amplitude oscillations. Both the hard and soft potentials with angular cut-off are considered, and the large time behavior of solutions in $L^\infty_{x,v}$ norm with explicit rates of convergence is also studied.
报告时间:2016年5月23日(星期一)上午10:30---11:30
报告地点:科技楼南楼702