报告人:李扬荣(西南大学)
邀请人:崔洪勇
报告时间:2021年1月6日(星期三)10:00-11:00
报告地点:腾讯会议ID:210 915 570
报告题目:Almost continuity of random attractors
报告摘要: In this talk, we focus on the continuity of a pullback random attractor depended on time and sample parameters. Assuming three conditions including the union closedness of the universe,the time-sample compactness of the PRA and the joint continuity of the cocycle, we prove that, under the Hausdorff metric,the map (t,s) \to A(t, \theta_s\omega) is continuous at all points of a residual dense subset of the Euclid plane and full pre-continuous.Applying to the non-autonomous stochastic g-Navier-Stokes equation, we show the sample-continuity and local-uniform asymptotic compactness of the cocycle, which lead to the existence, residual continuity and pre-continuity of a PRA.
报告人简介:李扬荣,西南大学数学与统计学院教授,博导。博士(南京大学1996),博士后(北京应用物理与计算数学所)。现任重庆数学学会副理事长,曾任中国数学会理事(2011-2015)。主要研究随机偏微分方程、随机动力系统及其随机吸引子,先后在J. Dyn. Diff. Equ,J. Diff. Equ,Physica D, J. Appl .Probab.,Appl. Math. Opt.,Appl. Math. Comp. 等期刊上发表论文100余篇 (其中SCI论文70余篇)。先后完成国家自然科学基金面上项目三项, 曾获重庆市自然科学奖二等奖。