报告人:姬杰 (南京航空航天大学)
报告题目:Existence, uniqueness and smoothing effect for spatially homogeneous Landau-Coulomb equation in $H^{-\f12}$ space with polynomial tail
报告摘要:We demonstrate that the spatially homogeneous Landau-Coulomb equation exhibits global well-posedness in the space $H^{-\f12,\sss}_3\cap L^1_{7}\cap L\log L$ with $\sss>1/2$. Additionally, we furnish several quantitative assessments regarding the smoothing estimates in weighted Sobolev spaces for various initial data configurations. Consequently, we confirm the conjecture that the solution possesses a $C^\infty$ smoothing effect for any positive time, similar to the heat equation, despite the initial data having only a polynomial tail.
报告时间:2024年11月27日(星期三)16:30-18:00
报告地点:东32楼115会议室
邀请人:雷远杰
报告人简介:姬杰,讲师,南京航空航天大学,博士毕业于清华大学。主要从事动理学方程的适定性与稳定性的研究。在 SIAM Journal on Mathematical Analysis等国际期刊上发表论文数篇。