报告人:林治武(乔治亚理工学院)
邀请人:李骥
报告时间:2023年5月25日(星期四)15:30-17:00
报告地点:科技楼南楼702室
报告题目:The stability of Kelvin-Stuart cat's eye flows.
报告摘要:Kelvin-Stuart vortices are classical mixing layer fows with many applicationsin fluid mechanics, plasma physics and planetary rings. We prove that the whole family of Kelvin-Stuart vortices is nonlinearly stable for co-periodic perturbations, and linearly unstable for multi-periodic or modulational perturbations. Kelvin-Stuart cat's eyes also appear as magnetic islands which are magnetostatic equilibria for the 2D ideal MHD equations in plasmas. We prove nonlinear stability of these magnetic islands for co-periodic perturbations, and give the first rigorous proof of the coalescence instability.
报告人简介:林治武,美国乔治亚理工学院教授、博士生导师,从事非线性分析及其应用领域的研究工作,在非线性波动方程解的稳定性、解的长时间行为方面作出一系列开创性的工作,研究成果发表在《Invent Math》、《Memoirs of AMS》、《CPAM》、《CMP》、《ARMA》等学术期刊。