学术交流

【学术报告】2019年9月21日司智勇、郑海标副教授来我院举办学术讲座

发布时间:2019-09-19   

报告人:司智勇 副教授(河南理工大学)

报告题目:Numerical methods for incompressible MHD equations

报告摘要:Magnetohydrodynamics (MHD) is the study of the interaction of electromagnetic fields and conducting fluids. The modeling consists of a coupling between the equations of fluid mechanics and the Maxwell equations of electromagnetism. Applications of MHD on different scales can be found in many disciplines such as astrophysics, controlled thermonuclear fusion and engineering related to liquid metal. There is a great deal of literature devoted to various aspects of MHD. This report is mainly devoted to overview the numerical methods for the incompressible Magnetohydrodynamics (MHD) system.

报告人简介:司智勇,河南理工大学副教授,曾在西安交通大学求学,师从何银年教授。曾多次访问香港城市大学,匹兹堡大学等境外高校。 主要研究方向有限元方法及其应用,包括有限元模拟,特征线方法及磁流体计算研究。

报告时间:2019年9月21日(星期六)上午11:00-13:00

报告地点:科技楼南813



报告人郑海标 副教授(华东师范大学)

报告题目Domain decomposition method for the fully-mixed Stokes-Darcy coupled problem

报告摘要:The Stokes-Darcy coupled fluid flow model is one of the most popular multi-domain and multiphysics problem. We propose herein a new parallel domain decomposition method to study the fully-mixed Stokes-Darcy problem coupled with the Beavers-Joseph-Saffman (BJS) interface condition. Efficient and effective Robin-type boundary conditions are introduced without using any Lagrange multiplier, which allows to decouple the problem into two subproblems. The equivalence between the original coupled problem and the decoupled subproblems are derived with the compatibility conditions. Moreover, we obtain the convergence of the iteration parallel method. For suitable mixed finite element approximations and choice of parameters, both mesh-dependent and mesh-independent convergence rates are proved rigorously. Two numerical examples are presented to show the exclusive features of the proposed parallel domain decomposition method. Furthermore, the proposed method is easy for implementation since there are many “legacy” algorithms or codes available for each of two uncoupled sub-problems.

报告人简介:郑海标,华东师范大学副教授,曾在西安交通大学求学,师从侯延仁教授,后留校任教,在美国匹兹堡大学访问一年,师从William J Layton。 主要研究方向有限元方法及其应用,包括多区域多物理问题建模、模拟,区域分解及并行算法研究。曾获陕西省科学技术奖二等奖(第二完成人)和陕西省优秀博士论文。

报告时间:2019年9月21日(星期六)下午17:00-19:00

报告地点:科技楼(南楼)813





版权所有 © 2017 华中科技大学数学与统计学院