发布时间:2018-09-20
报告人: 聂玉峰(西北工业大学理学院)
报告题目: Efficient Methods for Homogenization of Random Heterogeneous Materials
报告摘要:Predicting homogeneous coefficients of random heterogeneous materials involves solving auxiliary problems in volume element. The accuracy of homogeneous coefficients depends not only on the size of volume element, but also on the boundary condition. Dirichlet and Neumann boundary conditions give upper and lower bounds of real homogeneous coefficients respectively. But when the contrast ratio of high and low coefficients is large , these upper and lower bounds will be too broad to predict the homogeneous coefficients. We propose a new boundary condition constructed by combining Dirichlet and Neumann boundary conditions ------ Robin boundary condition. As the volume element size goes to infinity, the convergence of the approximate homogeneous coefficients under Robin boundary condition is shown. Numerical examples demonstrate that the results lie in that of Dirichlet and Neumann boundary conditions. And by choosing proper parameter, Robin boundary condition does better than Dirichlet-Neumann mixed boundary condition and it may be an optimal boundary condition.
报告人简介:聂玉峰,西北工业大学理学院教授、数学学科博士生导师。2000年于中国航空研究院获博士学位,2004年到2006年先后访问美国加州大学和美国西北大学。主要从事大规模科学计算的模型、理论与方法研究,主持国家级项目(子项目)5项,发表科研论文150余篇,指导毕业硕士生、博士生50余名。2016年获陕西省自然科学技术奖二等奖、陕西省教学名师奖。现担任《International Journal of Numerical Analysis and Modeling》执行主编、中国工业与应用数学学会常务理事、中国数学会理事、教育部大学数学教学指导委员会委员。
报告时间: 2018年9月22日(星期六)上午10:00—11:00
报告地点: 科技楼南楼702室