发布时间:2017-11-17
报告人:席福宝教授(北京理工大学 数学与统计学院)
报告题目:Stochastic Damping Hamiltonian Systems with State-Dependent Switching
报告摘要:In this talk, a class of regime-switching stochastic damping Hamiltonian systems with continuous-state-dependent switching will be discussed. First, for a special Markovian switching case, the existence of a globally weak solution is constructed by making using of the martingale approach. Next, for the general continuous-state-dependent switching case, the existence of a globally weak solution is established by virtue of the Radon-Nikodym derivative method. Then, strong Feller property is proved by the killing technique and the Radon-Nikodym derivative method. Moreover, based on the above results, exponential ergodicity is obtained under the Foster-Lyapunov drift condition. Finally, some examples are presented for illustration.
报告人简介:席福宝,北京理工大学数学与统计学院教授,博士生导师;主要从事马氏过程与随机分析领域的研究;特别地,关于含小参数的切换扩散过程的大偏差, 关于切换跳扩散过程的稳定性、Feller性、强Feller性、指数遍历性和强遍历性等方面,取得了一些重要研究成果;部分论文发表在SIAM Journal on Control and Optimization, Stochastic Processes and their Applications, Journal of Applied Probability, Science China Mathematics等国内外重要学术期刊上。
报告时间:2017年11月24日(星期五)上午:10:30-11:30
报告地点:科技楼(南楼)602