姓名: 高华东

性别:

出生日期: 1987-08-28


职位: 讲师

电话:

Email: huadong@hust.edu.cn

个人主页:


基本情况 Basic

Huadong Gao’s research focuses on numerical methods for PDEs that arise from modeling scientific and engineering problems. One major research interest is in numerical methods for nonlinear parabolic equations.

Address:
School of Mathematics and Statistics, 
Huazhong University of Science and Technology, 
Wuhan 430074, People’s Republic of China


教育背景 Educational background

PhD
Department of Mathematics, City University of Hong Kong, 
August 2011–August 2014.
Thesis: Error Analysis of Linearized Finite Element Methods for Several Nonlinear Parabolic Equations in Physics and Material Sciences
Supervisor: Prof. Weiwei Sun


MS 
School of Mathematical Sciences, Nankai University, 
September 2008–June 2011.


BS 
Department of Applied Mathematics, Dalian University of Technology, 
August 2004–July 2008.

工作经历 Work experience

Huazhong University of Science and Technology, China
September 2014 - present

研究方向 Research fields

Numerical Analysis: error estimate of finite difference and finite element methods for nonlinear parabolic equations.


Mathematical Modelling and Scientific Computing: heat and sweat transport in textile materials, vortex simulation in superconductivity, computational micromagnetics in ferromagnetic materials.

科研成果 Scientific achievements

[1] Huadong Gao, Buyang Li,  Weiwei Sun. Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon. Numerische Mathematik. accepted for publication (2016). 

[2] Huadong Gao,  Weiwei Sun. A new mixed formulation and efficient numerical solution of Ginzburg--Landau equations under the temporal gauge. SIAM Journal on Scientific Computing. 38(2016),A1339-A1357.

[3] Huadong Gao. Unconditional optimal error estimates of BDF-Galerkin FEMs for nonlinear thermistor equations. Journal of Scientific Computing. 66 (2016), 504-527.

[4] Huadong Gao, Weiwei Sun. An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. Journal of Computational Physics. 294 (2015), 329-345.

[5] Huadong Gao. Optimal error estimates of a linearized backward Euler Galerkin FEM for the Landau-Lifshitz equation. SIAM Journal on Numerical Analysis. 52(2014),2574-2593.

[6] Huadong Gao, Buyang Li, Weiwei Sun. Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg-Landau equations in superconductivity. SIAM Journal on Numerical Analysis. 52 (2014), 1183-1202.

[7] Buyang Li, Huadong Gao, Weiwei Sun. Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM Journal on Numerical Analysis. 52 (2014), 933-954.

[8] Huadong Gao. Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. Journal of Scientific Computing. 58 (2014), 627-647. 

其它 Other

主持国家青年科学基金1项 ( 超导问题中动态金兹堡-朗道方程的高效计算方法, NO. 11501227), 2016/01---2018/12.